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The generalized temperature factor is formulated within the framework of the one-particle potential in terms 
of functions derived from the harmonic functions of Stewart. This formulation is then applied to the wurtzite 
structure and projection analysis is used to eliminate one component of the potential. Inclusion of the 
generalized temperature factor in the structure-factor expression for wurtzitc leads to the appearance of 
harmonically forbidden reflections and the loss of equivalence of non-symmetry-related reflections which 
occur at the same Bragg angle. The results of a room-temperature X-ray experiment with cadmium selenide 
are interpreted within the above model to yield cubic anharmonic parameters 1fl3321 = 1fl3371 = lfl3131 
(0.13 _+ 0.01) x 10 -12 erg A -3. These are used to estimate the anharmonic effect on the position parameter 
u. Some general conclusions are drawn regarding the possibility of observing similar effects in other wurtzitc 
structures. 

Introduction 

The effects of anharmonic thermal vibrations on the 
intensities of Bragg reflections have been investigated in 
a number of cubic structures with both neutrons and 
X-rays (for a summary see Willis & Pryor, 1975). The 
interpretation of these effects has been successfully 
based on the effective one-particle potential (OPP) 
within the framework of Dawson 's  (1967) generalized 
structure-factor formulation. Recently, Mair & B arnea 
(1975) have extended this treatment to materials having 
the wurtzite structure. However, while the importance 
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University of Technology, Enschede, The Netherlands. 

of the first-order component in the anharmonic tem- 
perature factor was recognized, it was neglected in the 
potential expansion. Anharmonic  contributions to the 
atomic vibrations in hexagonal zinc have also been 
considered by several authors and their presence has 
been established by both neutron and M6ssbauer tech- 
niques (Nizzoli, 1976; Merisalo & Larsen, 1977; 
Albanese, Deriu & Ghezzi, 1976). 

The present paper details a general formulation of 
anharmonicity within the OPP  approximation in terms 
of functions derived from the harmonic functions listed 
by Stewart (1972, 1973). This formulation is then 
applied to the case of wurtzite. In § 2 the resulting 
temperature-factor expressions for wurtzite are shown 
to predict X-ray intensity differences between some 
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harmonically equivalent reflections, as well as the 
appearance of a group of harmonically forbidden 
reflections. This is followed by a discussion of a room- 
temperature experiment on a large crystal of cadmium 
selenide. While it was not possible to observe any of the 
forbidden reflections, significant differences in the 
intensities of certain harmonically equivalent re- 
flections were observed [for a preliminary report of this 
work, see also Whiteley, Moss & Barnea (1977)1. 

The magnitude of the effect of anharmonicity upon 
the conventionally refined u parameter in cadmium 
selenide is calculated. An estimate of the relative 
magnitude of anharmonic effects in other wurtzite 
structures is presented in the final section. 

1. Theory 

If the crystal is treated as an Einstein solid, with the 
coupling between atomic vibrations being neglected, 
the crystal potential can be replaced by the one-particle 
potential. This method reproduces essentially the same 
results as the rigorous lattice-dynamical treatment and 
can be applied without difficulty to any crystal 
structure (Willis & Pryor, 1975). 

Following Dawson, Hurley & Maslen (1967) the 
OPP may be expanded in terms of functions obeying 
the local site symmetry. These functions can be derived 
directly by a group-theoretical approach or by ex- 
panding the potential as a power series in the atomic 
displacements, retaining only those terms which are 
invariant under the operations of the point group. A 
simpler approach utilizes the harmonic basis functions 
developed by Stewart (1972, 1973) for multipole ex- 
pansions of the atomic charge density. These functions 
have been given to fourth order for all point groups in 
terms of the direction cosines q~,qy, qz of the Bragg 
vector Q. In general, the OPP may therefore be 
expressed as: 

V =  ~ ' V ,  ( la)  
t/ 

where 

V.=r"  ~" ~./3..tKpt(q~,qy, q~). (lb) 
r n = 0  I 

p = n - 2m, [ ] denotes the integer part, Kpt (qx, qy, qz) is 
the /th harmonic of order p normalized such that 
{Kpt}ma × = l (Merisalo & Larsen, 1977), and fl, wt are 
coefficients of the potential components V,w e 

The anharmonic temperature factor T(Q) may then 
be evaluated by taking the ensemble average of the 
potential in the classical limit (Willis, 1969) 

f e x p ( - V / k .  T) exp(iQ.u) d 3 u 
T ( Q ) =  (exp(iQ.u))  = f e x p ( _ V / k . T ) d 3  u 

(2) 

where Q is the scattering vector, u is the displacement 

of the atom from its equilibrium position, k,  is the 
Boltzmann constant and T is the absolute temperature. 

Equation (2) may be evaluated by use of the stan- 
dard integral I (Gradshteyn & Ryzhik, 1965) 

oo j- I = x" exp ( - ax  2 - bx + iyx)dx  
- - 0 0  

- ! I i"v/Jr exp ( b -  i7) 2 H,  (3) 
2" a I'+')n 4a I . ~  ] 

where H,  is the nth order Hermite polynomial of 
complex argument. 

For all but the five point groups of lowest symmetry 
(1,-f,2,m,2/m), b is zero (when the OPP is expressed 
in Cartesian coordinates) and H,  is then a purely real 
function. This formulation is general and simple, except 
for the five point groups of lowest symmetry in which a 
given component of the potential V.p / yields both real 
and imaginary parts in T(Q). 

It should be noted that the symmetry restrictions 
listed by Stewart are referred to a maximum symmetry 
direction along the z axis with the x axis perpendicular 
to a principal mirror plane. In general this will neces- 
sitate a transformation to give the correct orientation 
relative to the local atomic environment. By the proper- 
ties of the Fourier transform this rotation may be 
applied to either real or reciprocal space. 

The local site symmetry in wurtzite (3m) restricts 
the harmonics Kpt appearing in (lb). Retaining only 
terms to third order reduces ( la)  to the form: 

V =  V 0+ V I+  V 2+ V 3 (4a) 

where 

V0 = fl00, (4b) 

VI = ill, 3 z (4c) 

V 2 = ,8225 ½(3z 2 -  r 2) + ,820 ' r 2 ( 4 d )  

V 3 = f1332(3x2-y2)y + ~337½(5Z 2 -  3r2)z + fl313zr 2. 
(4e) 

Here (x,y,z) form a Cartesian coordinate system. The 
subscripts np! have the following meaning: the first 
subscript denotes the order of the term, the second 
denotes the order of the harmonic Kpt and the third is 
the lth harmonic of order p listed by Stewart (1973). 
The second-order term in the OPP expansion gives the 
usual hexagonal component in the harmonic approxi- 
mation. 

The assumption that all components of the OPP 
except V 2 are small, leads to the result: 

T(Q) = 7",. + iT.IT,,  3 + T332 + T3.~7 + T3,.~] (5a) 

T. = exp l - (u  2 + v 2 + w2)l (5b) 

]113 
T~ ~3 - 2k ,  Ta~/2 H.(w) (5c) 
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fl332 
T332 - -  8k B Ta]/2 [ n 3 ( v )  - -  3 Hz(u) HI(/) )] ( 5 d )  

~337 [ H a ( w ) 3 H I ( w ) H 2 ( u ) + H 2 ( / ) ) ]  
T337 = 8kB Ta~/2 L a--~3 2 a I 

T313_ ,6'3,3 I-/H3(--w) + H,(w) 
8ks Ta~/2 I_ a 3 

where 

(Se) 
H2(u) + H2(v)] ' 

a I 

(5f)  

n 2 p 2  n 2  q 2  
U 2 - -  , V 2 = ~ , W 2 - -  

a l  a 1 

4 n z 4 n z 
a l  = ~ 1 1 _ _  ' a 3  = B 3 3  

~2 r 2 

a3 

Bll  and B33 are the hexagonal Debye-Waller factors 
in the harmonic approximation, and the indices (pqr) 
are referred to an orthogonal reciprocal-lattice coordi- 
nate system• The required transforms relating (pqr) to 
the hexagonal Miller indices (hkl), are given in Table I 
and ensure that the potential minima are directed along 
the antibonding directions. These equations are 
consistent with the corresponding expressions given 
by Mair & Barnea (1975), and also illustrate the 
advantage of using the harmonics formulation in the 
Cartesian coordinate system [cf equations (5) and 
(6)]. 

Expression (5) for the temperature factor requires 
four anharmonic parameters. By considering the 
projection of T~ 3 on T313 it is, however, possible to 
show that the first-order potential component is not 
required and the OPP may then be effectively described 
by the three third-order functions (see Appendix)• 

2. The effects of  anharmonicity on Bragg intensities 

For the purpose of this discussion it is necessary to 
transform the Cartesian expressions of (5) into the 

Table 1. Transforms between Cartesian (pqr) and 
hexagonal ( hkl) indices 

h+k k - h  l 
, r-~ - -  

P -~ --'-~-o ' q -" v/3ao Co 

Table 2. Sign conventions for the third-order anhar- 
monic parameters for each atom of the unit cell with 

Cd(1) at the origin 

Cd(1) Cd(2) Se(l) Se(2) 

/~332 + - -  + - -  
~337 + + - -  - -  
/~313 - -  - -  + + 

direct hexagonal coordinate system. As stated 
previously, it is possible to neglect Vl; hence the 
temperature factor takes the form: 

T= Y c ( l _ i  f1332B]l ( h 3 - k 3  h 2 k - h M )  
v/3a3 on 3k~T ~ + 2 

- i 3 2 n  3cokST B33 3 -  2Co 2 / 

- - B I l l  3 -- Bll(h2+hk+k2)]a~ } 

i f1313B331 {B33 ( B3312~ 
3 2 Z~ c o k s T _ 3 - -~c ~ ! 

--1- 2 N i l  1 3  B l l ( h 2 + h k - l - k 2 ! l }  ) 
- ao z (6) 

where 

T C=exp -- ~ a~ + 4cg J " 

It is important to consider the relative orientations 
of the potential components about each atom of the 
unit cell. By considering projections along and perpen- 
dicular to the c 0 axis, it is possible to establish sign 
relations between the various anharmonic components. 
These relations are listed in Table 2 which merely 
implies the relative signs of the terms, the /-dependent 
functions for a given atom being given opposite signs to 
allow anharmonic vibrations along both directions 
above and below the atom. The absolute signs of the 
terms must, of course, be obtained in the refinement of 
the experimental data. With these sign conventions, and 
further assuming the magnitudes of the individual 
anharmonic parameters to be the same for both atomic 
species, the following expression for the generalized 
structure factor is obtained 

• . I T ( 2 ) l  F(Q)  = (f~ + ~ )1 T~ + .. ~ ,  

× { l + ( - - 1 ) ' e x p [  2ni(h+2k)]~---- } 

+ i(fA + if.~')T~) 

x {1 ( - l ) ; exp  . } _ [2n/(h + 2k)] 3 

• r, ""r' (2) + exp(2~ul )  (fB +/f~ )[TcB + z, ~1  

{l  + ex, + t 
+ i ( f ~  + ic,,W-(l) "JB I" aB 

× { 1  (-1)l exp[ 2ni(h + 
. (7) 
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where T~ ) contains all the/-dependent terms for atom 
j, Ta~) I involves only h and k, the double prime denotes 
the imaginary anomalous dispersion component, u is 
the structural parameter and the subscripts c and a 
refer to the centrosymmetric and antisymmetric 
components. 

From the above expression several features may be 
readily seen. Reflections not related by symmetry and 
occurring at the same sin 8/2 value will now exhibit 
different intensities. For example, reflections such as 
70/and 53/will, when anharmonic effects are included, 
differ in intensity. These differences are due to the third- 
order term T~J ~. In particular, the 700 and 530 inten- 
sity difference, having no /-dependence, will provide a 
direct measure of the /3332 parameter which charac- 
terizes the third-order potential function in the basal 
plane. Symmetry-related reflections will, of course, 
remain equivalent when anharmonicity is included. 

By a suitable choice of indices, it is also possible to 
separate the effect of the /-dependent terms from that 
due to the pure h,k-dependent function. Thus, reflec- 
tions for which h + 2k = 3m, l = 2n or reflections with 
h = k will have no contribution from T (I) It must be 

a l  " 

remembered, however, that while two parameters occur 
in the/-dependence of the anharmonic vibrations, their 
unique determination may not be possible (Cooper, 
Rouse & Fuess, 1973). 

The component T~J ~ will also give rise to the norm- 
ally forbidden group of reflections for which h + 2k = 
3m, h =/= - k / 2 ,  k or - 2 k ,  l = 2n + 1, where m and n are 
integers. [A similar effect has also been predicted in 
zinc by Nizzoli (1976)]. In principle, non-spherical dis- 
tortions of the atomic charge density should also result 
in the appearance of these forbidden reflections, since 
these distortions are subject to the same symmetry 
restrictions imposed on the OPP expansion. However, 
the above constraints on the hkl values imply that the 
lowest available forbidden reflection is already too far 
out in reciprocal space to show any discernible bonding 
effect. 

It is interesting to note that, apart from reflections 
for which h = k, the appearance of these effects is 
independent of the presence of anomalous dispersion. 
Hence, it should be possible to observe these anhar- 
monic effects with both X-ray and neutron methods. 

3. Experimental 

The X-ray measurements were carried out with the 
specimen used in the structure determination of 
cadmium selenide (specimen No. 2 in Freeman, Mair & 
Barnea, 1977) in the form o f a  platelet with a 1.3 x 0.9 
cm 110 face. 

The intensities were measured by the extended-face 
crystal technique described in previous papers (Mair, 
Prager & Barnea, 1971; Freeman, Mair & Barnea, 
1977) on a XRD-4 General Electric manual diffract- 

ometer (powered by a stabilized Philips PW 1320 
generator) with Mo K<t radiation. Balanced zirconium- 
yttrium oxide filters were placed in the diffracted beam 
before the scintillation counter. The crystal face was 
aligned perpendicular to the ~0 axis by a laser technique 
(Moss & Barnea, 1976). Preliminary experiments 
showed that the divergence of the incident beam was 
such that for large values of IXI the diffracted beam was 
not completely intercepted by the diffracted-beam 
aperture. The incident-beam collimator was therefore 
redesigned to decrease the beam divergence. Each 
reflection was maximized and centred. Integrated 
intensities were obtained in a 0-28 scan ranging over 
3.5 ° 20 starting 1.5 ° 20 below the peak maximum. The 
measurements were carried out at 22 + 2 °C. 

The intensities were obtained in the two symmetrical 
aspects (20,%,~0,co) and (28, ,Z - 90°, ~0 + 180 °, -co) 
where ,g = 0 when the normal to the crystal face is in 
the plane of incidence. All measured reflections were 
within the - 4 5  o < X < 45 o octant. 

The internal consistency of the intensities was 
demonstrated by the agreement of the same reflection 
measured in the two aspects and the agreement 
between the symmetrically equivalent hkl and khl 
reflections (the average deviation from the mean was 
1.25 %). Fig. 1 illustrates a set of peaks of harmonically 
equivalent reflections. 

4. Discussion 

It is convenient to define, in analogy with the Bijvoet 
ratio, the anharmonic intensity ratio (AIR) 

I (hkl)  - I ( h ' k ' l )  
AIR = (8) 

½[I(hkl) + I(h 'k ' l )]  

eq eq eq ~ eq ~ eq 
t '~  I "~ ~ O 14", ~ ¢'~ o'~ 

Fig. 1. H a r m o n i c a l l y  equ iva len t  ref lect ions in the two  sym-  
met r ica l  a spec t s  (I and  II). 
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where h,k,h',k' are Miller indices such that 

h 2 + hk + k 2 : h '2 + h '  k '  + k '2. 

Table 3 lists a set of observed and calculated AIR 
and the Bijvoet ratios of 224/224, 336/336 and 
332/33:2. The errors cited in Table 3 are statistically 
determined standard deviations. The determination of 
the anharmonic parameters was carried out by a 
least-squares minimization of the weighted sum of 
squared residuals of calculated and observed AIR. The 
weights used were 1/a~ where the a i were the experi- 
mental variances. The AIR were calculated with the 
structural and harmonic thermal parameters of 
Freeman, Mair & Barnea (1977), the spherical atomic 
scattering factors of Doyle & Turner (1968) and the 
dispersion corrections of Cromer & Liberman (1970). 
The intensities were assumed to be kinematic; this was 
justified because of the exclusive use of relatively low 

Table 3. Calculated and experimental anharmonic 
intensity and BUvoet ratios (%) 

hk l  Harmonic Anharmonic Experimental 

700 } 
530 0.0 -13.5 -12.4 + 3.1 
702 } 
532 0.0 -13 .7  -15.8  _+ 3.9 

703 } 
533 0.0 4.4 6.3 _+ 1.5 
70[ } 
53i 0.0 5.0 8.1 + 3.4 
70:2 } 
53:2 0.0 -14 .0  -14.7  _+ 3.9 
703 / 
533 0.0 4.4 1.5 + 1.6 
703 } 
533 0.0 4.4 1.7 + 2.0 
332 } 
332 20.7 20.8 20-1 + 0.5 
336 } 
336 -27.6  -27.1 -26.6 + 1-1 
224 } 
22,~ 33.5 16.1 16.2 + 2.3 

intensities and the relative insensitivity of the AIR to 
extinction. With the sign conventions of Table 2 and 
equal magnitudes of all anharmonic parameters 
assumed, the refinement yielded 1flanl = 1fl3371 = 
1fl3131 = (0.13 +_ 0.01) x 10 -lz erg N -3 with the 
absolute signs as in Table 2. 

The contribution to the mean thermal displacement 
of an atom from equilibrium in the c 0 direction, (z), can 
be estimated from these values of the anharmonic 
parameters. The combined effect of the opposite dis- 
placement of the atoms due to anharmonic thermal 
motion results in a decrease of 0.009 A in the Cd-Se 
distance along %. This is in excellent agreement with 
the suggestion of Mair & Barnea (1975) that neglect of 
anharmonicity in the structure refinement of cadmium 
selenide results in a u parameter greater than that 
calculated from the co/a o ratio by 0.0014 +_ 0.0002, 
i.e. a change in the Cd-Se  distance along c 0 of 
0-010 __ 0.001 A. 

In order to compare the anharmonic thermal par- 
ameters of cadmium selenide with those available for 
the cubic materials ZnTe, ZnS (Cooper, Rouse & 
Fuess, 1973) and ZnSe (Barnea, McIntyre & Moss, to 
be published) the latter were converted to average par- 
ameter's and divided by 3¢3 to satisfy the normaliza- 
tion of (1). These parameters are listed in Table 4. 

A unique determination of individual components for 
the two atomic species or of separate values for 
#337 and #313 for each atom was impossible because of 
the paucity of data. 

The same measure of good agreement between the 
calculated and observe AIR was obtained when V~ 3 or 
V3~ 3, singly or in combination, were used in the calcu- 
lations. An estimate of the fl113 parameter was obtained 
by requiring that either potential component should 
make a similar contribution to (z). This results in a 
relation 

313 
#113 = ~ [3B33 + 2Bl l ]  

1fl3321 = 1fl3371 = 1fl3131 = O" 13 × 10 - n  erg  A -s 

Table 4. Comparison of the anharmonie thermal 
parameter of CdSe with the average anharmonie para- 

meters of several cubic materials defined by 

fleff 1 
#-- I#AI = I#.I = [I + (B/Bn)3I 3V/3 

Note that the cubic anharmonic parameters have been divided by 
3 V/3 to satisfy the normalization condition in (l) 

# 
CdSe 0-13 +_ 0.01 x 10-~2ergA-3 
ZnS z 0.29 + 0-08 x l0 -z2 
ZnTe 1 0.12 _+ 0.03 x 10 -12 
ZnSe 2 0.13 + 0.02 x 10 -~2 

References: (1) Cooper, Rouse & Fuess (1973). (2) Barnea, 
McIntyre & Moss (to be published). 

! 
¸--2.0 

B (%) 
. 

53-45 - 

! ! ! 
-1 .0  

23.45 

13-45 

fl(×lO J:ergA ~) 

2!0 

ntal value 

Fig. 2. Calculated variation of the 224 Bijvoet ratio (%) with the 
third-order /-dependent parameter fl, with it assumed that 
l#3371 : 1fl3131 ~ ft. 
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Table 5. Calculated structure factors for  the 704 
reflection and several forbidden reflections with 1fl3321 = 

1l]3371 = 1fl3131 = 0" 13 X 10 -12 erg/i~-3 

hkl Fc.,t 

704 0.884 
301 0.080 
30 J O. 086 
601 0.196 
601 0.225 
603 0.333 
605 0.349 

or, averaging over the two atomic species, 

~113 = 0 " 0 8 6  ~313" 

A stringent test of the use of either of these potential 
components is provide by the anharmonic effects in the 
224 Bijvoet ratio which are purely a function of the 
/-dependent terms. Fig. 2 illustrates the remarkable 
sensitivity of the 224 Bijvoet ratio to the/-dependent 
anharmonic parameters. This curve could be produced 
using either V~t 3 or V313 in the OPP. This is in agree- 
ment with the results of the projection analysis 
presented in the Appendix. 

Several unsuccessful attempts were made to observe 
the forbidden 60i  reflection. Intensity calculations with 
the anharmonic parameters determined from the other 
reflections confirmed that it would be extremely diffi- 
cult to observe, as its structure factor was less than half 
as large as that of the weakest observable (704) re- 
flection (Table 5). Although such studies would be very 
timely, no attempt was made to observe forbidden 
reflections with neutrons or at elevated temperatures. 
In any case, the interpretation of such an observation 
would be complicated by the contribution of thermal 
diffuse scattering and multiple diffraction. 

Table 6. The ratios B~,/a o and B33/C o and Debye tem- 
peratures 0 o for  some wurtzite structures 

Atom A Atom B 
B, ,/a o B3Jc o Bj l/ao B33/c 0 01) (K) 

CdSe' 0.34 0.25 0-28 0.14 1816 
ZnO .2 0-10 0.06 0.17 0.11 3707 
ZnS 3 0.19 0.09 0.19 0.11 3516 
AIN .4 0-08 0.05 0.25 0.16 10045 
BeO .2 0.20 0.12 0.10 0.06 12806 
CdS s 0.30 0.19 0.24 0.15 2166 

References: (I) Freeman, Mair & Barnea (1977). (2) Sabine & 
Hogg (1969). (3) Hewat (1972). (4)Jeffrey, Parry & Mozzi (1956). 
(5) Demidenko, Koshchenko, Sabanova & Gran (1975). (6) 
Cline, Dunegan & Henderson (1967). (7)Abrahams & Bernstein 
(1969). (8)J. Castles, private communication. 
* Only isotropic temperature factors given. 

and are hence more easily interpreted. It should be 
noted that neglect of anharmonic effects in X-ray work 
may no longer be automatically justified. In fact, in 
some instances accurate positional parameters of atoms 
may only be obtained when anharmonicity is included 
in the least-squares refinement of the structure (Mair & 
Barnea, 1975). 
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tive criticism. Two of the authors (BW and GM) grate- 
fully acknowledge the financial support of Common- 
wealth Postgraduate Research Awards. This work 
was supported by the Australian Research Grants 
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5. General considerations 

Inspection of equations (5) indicates that for wurtzite 
structures the relative magnitude of the anharmonic 
term depends crucially on the ratios Bll/a o and 
B33/c o. Possible observation of anharmonic effects at 
room temperature will thus depend not only on a low 
Debye temperature but also on these ratios being large. 
Table 6 lists these ratios and Debye temperatures for a 
number of wurtzite structures for which data were 
readily available. An accurate knowledge of the 
Debye-Waller factors is of course essential for pre- 
dicting the magnitude of anharmonic effects. 

The results of the present work show that it is 
quite feasible to carry out investigations of anharmonic 
effects with X-rays, thus providing an alternative and 
complementary approach to the more commonly used 
neutron techniques. Indeed, although X-ray structure 
factors are complicated by bonding and dispersion 
effects, the intensities often suffer from less extinction 

A P P E N D I X  

The projection coefficient of a function A upon a 
function B is defined as 

P(A/B) = 
l A B  dr 

(; A 2dr)"~ (f ~ dr) ~'~ 

and provides a measure of similarity of the functions 
A and B, somewhat like a correlation coefficient. 
Identifying A and B with the anharmonic temperature- 
factor components of (5) leads to the three nonzero 
projection coefficients P(TlI3/T337). P(TII3/T313) and 
P(T337/T313). Assuming the integral to be over all space 
yields the exact expressions 

X/3(c - 1) 
P(TIi3/T337)= (5c  2 -  6c + 6) 1/2 
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P( Tl13/ T313) = V/2(1.5c + 1) 
(4 + 6c + 7.5c2) 1/2 

p(T33,/Ta,3) = V/3(5c 2 -- c - 4) 
(5c 2 -  6e + 6) 1/2(15e z + 12e + 8) m 

where c = B33/Blr These functions are plotted in Fig. 3. 
The diffraction data  extends only to a given value of 

sin 0/2 and therefore the integration should strictly 
be carried out to this limit. Since this omits the region 
in which the differences between the functions are 
increasing, it has the effect of enhancing the projections 

Table 7. Values o f  projection coefficients for CdSe 

Integration Integration to 
to infinity sin 0/2 cutoff 

P(T 1JT337) Cd 0.141 0.779 
Se -0.165 -0.635 

P(TII3/T313) Cd 0.844 0.996 
Se 0.844 0.998 

P(T337/T3~3) Cd -0.213 -0.765 
Se 0.253 0.674 

P(A/B) 
l - O - -  ~ P(T,~JTu,) I ~  P(THJT"~'') 

0.0 II ' l Op(T'71 ,,) 

- I . 0  

Fig. 3. Non-zero projections between first and third-order anhar- 
monic temperature-factor components in 3m site symmetry. 
Infinite integration limits, c = B3JB,r 

(see Table 7). It is thus seen that P(TlI3/T313) is very 
close to unity; hence either of the functions can 
represent the other. 
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